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Randomness and determinism in soap froth dynamics

Boris Levitan
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 20 June 1996!

A topological model of soap froth evolution with deterministic topological rearrangements~T2 processes!
agrees with experiments, in contrast with a model that performsT2 processes at random. However, in some
physical situations theT2 processes are not purely deterministic. The present work analyzes the interplay
between randomness and determinism inT2 processes by simulating a topological model, in which the
randomness is controlled by a parameter. The results agree with the suggested mean-field description. A
possible experimental test of these results is discussed.@S1063-651X~97!09101-0#

PACS number~s!: 82.70.Rr, 02.50.Fz, 05.70.Ln
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Soap froth, confined between two closely spaced para
plates, forms a cellular structure whose time evolution exh
its a number of interesting features@1#. The starting point for
the study of the froth’s dynamics is von Neumann’s la
which states how the areaan of anyn-sided bubble change
in time @2#:

dan
dt

5k~n26!, ~1!

wherek absorbs all the material constants.
As Eq. ~1! implies, bubbles withn,6 sides shrink and

disappear, so the total number of bubbles in the system
creases. Since no new bubbles appear and the total ar
the sample is fixed, the mean area of a bubbleā increases.
After a transient period@3,4#, which depends on the initia
configuration, coarsening approaches theuniversal scaling
regime@5# characterized by linear growth of the mean ar
ā;t and steady distributions of dimensionless areas~in units
of ā) and the number of sides of the bubbles.

When a bubble disappears, its neighbors can lose or
sides@6#. Such suddentopological rearrangementsare called
T2 processes. While Eq.~1! determines the evolution of th
froth in terms ofan andn in a uniqueway, the outcome of a
T2 process isnot uniquely determined by these variabl
~except for triangles!: there aretwo possibilities for the de-
cay of a rectangle andf ive for a pentagon. The correct ou
come can be determinedonly by specifying the total dynam
ics of the mechanical equilibration@7#. Only by solving such
dynamics can one simulate thedeterministicevolution of a
given initial configuration@8#.

One can avoid this complicated problem using a so-ca
topological approach@9#. Select theT2 outcome at random
@10,11# or apply any other plausiblerule that defines the
T2 processes in terms ofan and n only @12,13#. Then the
froth’s dynamics is treated as follows. The bubbles’ are
evolve according to Eq.~1!. Whenever a bubble’s area ap
proaches zero, aT2 process is performed according to t
chosen rule. To performT2 processes one needs to ke
only the topology ~a list of neighbor! and not the explicit
spatial configuration of the froth. The topological inform
tion can be stored in theadjacencymatrix @10#. Then the
T2 processes are equivalent to certain transformations of
matrix.
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The model based on randomT2 processes gives satisfa
tory results for the distribution of the number of sides~topo-
logical distribution! in the scaling state@10,11#, but disagrees
with experiments in aqualitativeway for a number of more
complicated problems@13#. We will consider here one o
them, the evolution of a single defect@14# in an ideal net-
work of hexagonal bubbles~the defect is created by aT1
switch of a single side!. Were it not for the defect, the system
would have been steady@see Eq.~1!#. So the network con-
sists of two parts: the evolving neighborhood of the def
~the ‘‘perturbed’’ part! and the ‘‘inert’’ hexagons that do no
evolve. A propagating front separates them.

Simulations of this problem by the random model@15#
predicted that the topological distribution of the growin
cluster approaches a steady form with second mom
m2'0.8. More detailed numerical experiments@16,17#,
where the effects of the spatial configuration of the froth
taken into account explicitly, show, however, theunbounded
growth ofm2. The cluster consists of one very large bubb
~with its number of sides being of the order of the number
bubbles in the cluster! surrounded mostly by five-, six-, an
seven-sided bubbles, resulting in the unbounded growth
m2 in a straightforward way.

This discrepancy originates from the nonrandomness
the T2 processes. Indeed, the more realistic topolog
model~modelC in Ref. @13#!, which performsT2 processes
deterministically, reproduces the cluster’s structure describ
above. The explicit rules are not essential for us now;
note only that in modelC a many-sided bubble more readi
receives a side when a pentagon vanishes and more r
tantly loses a side when a rectangle vanishes, compare
the randomT2 case, promoting the growth of the large
bubbles.

This failure of the random model does not mean that i
totally irrelevant. Indeed, one can imagine situations wh
the T2 processes look random. When a four- or five-sid
bubble shrinks to a point it turns into afourfold or fivefold
vertex that ismechanically unstableand decays into one o
the possible stable configurations of threefold vertices. G
erally, the result of the decay of an unstable state into on
several stable states may depend on very tiny details of
real system. In this sense, the deterministic model relate
the ‘‘ideal’’ situation, which can be perturbed, for exampl
by roughening the plates’ surfaces, especially if the dista
1205 © 1997 The American Physical Society
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between the platesD is much greater than the soap wall
width d as suggested in Ref.@7#.

When D@d, the irregularities of the plates’ shape a
magnified by the three-dimensional capillary instability
the vanishing bubble and therefore can effectively random
the T2 processes. In this case, the random approach se
relevant. In the opposite limitD!d, the situation is quite
stable andT2 processes are deterministic@7#. Accordingly,
the long-time evolution of the single cluster is qualitative
different in these two limits, answering the question posed
the end of Ref.@7#, whether the difference between the tw
limits leads to dissimilar macroscopic behavior at long tim

In the present work we ‘‘bridge’’ these two extreme
introducing noise into the deterministic model~modelC of
Ref. @13#!. Experimentally, the noise is governed by t
plates’ roughness and by theD/d ratio; in the Potts mode
simulation, like that of Ref.@16#, the T2 processes can b
randomized by the temperature as well as by the quenc
disorder.

Thus we introduce the noise parameterb (0,b,1), the
probability that a givenT2 process will happen at random
At the two extremes we have the deterministic (b50) and
random (b51) approaches, so thatm2 growth is unbounded
for b50, while forb51 it stays finite. Therefore, graduall
increasingb from 0 to 1, one expects atransition from one
type of behavior to another at someb5bc . On the other
hand, one cannota priori rule out the possibility that for any
bÞ0, m2(t) is bounded and converges to its limitm2(b)
andm2(b)→` whenb→0.

I have simulated the model for differentb on a network
of 40 000 bubbles with periodic boundary conditions.

FIG. 1. Second moment of the topological distribution of t
clusterm2 as a function of the number of killed bubblest obtained
by simulations on a lattice of 40 000 bubbles for three values of
noise parameterb: b50.1 ~solid squares!, b50.7 ~crosses!,
b50.2 ~open circles!. Peaks of these curves at the very end of
evolution are due to finite-size effects, as seen from the compar
with larger simulations:b50.2 ~bullets! for 100 000 bubbles lat-
tice.
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small b one of the bubbles rapidly increases its number
sidesn and in a short time achievesn530, when the simu-
lations automatically stopped. For largeb such large bubbles
are not observed. Typical dependencesm2(t) for three values
of b are presented in Fig. 1. Forb50.2 andb50.7, m2
achieves its equilibrium value in a very short time@18#. On
the other hand, forb50.1,m2 grows linearly in time.

Increasingb, the behavior changes atb50.17. I have
performed extensive simulations forb50.17 on a network
of 100 000 bubbles. The maximum number of bubbles in
cluster wasN54250. In some runs, the topological distrib
tion of the cluster rapidly approached a steady form~see
Table I! with m2'1.65 ~whenN;300) and then stayed al
most unchanged until the end~‘‘large b ’’ behavior!. In other
runs, a large bubble appeared and grew untiln530 ~‘‘small
b ’’ behavior!. A typical evolution of such bubbles is pre
sented in Fig. 2. In fact, this coexistence has been obse
not only at b50.17 but in the whole interva
0.17,b,0.20; the ‘‘largeb ’’ behavior did not occur for
b,0.17 and the ‘‘smallb ’’ behavior did not occur for
b.0.20. This coexistence is due to the finite duration of
simulations and is related to the ‘‘nucleation time’’ as d
cussed below.

Let us turn to the mean-field description. We define t
probabilities for a givenn-sided bubble to gain and to lose
side in aT2 process:Pgain5c1n, Plose5c2n ~the coeffi-
cients c1 and c2 are the corresponding probabilities p
side!. For randomT2 processes, the following expressio
were obtained in a mean-field approximation@19#:

c2
ran53w3x312w4x412w5x5 , c1

ran5w5x5 . ~2!

e

on

FIG. 2. Typical evolution of large bubbles. Dependence of
number of sidesn on Aa (a is the area of the bubble! for two
bubbles in the same cluster, atb50.17.
TABLE I. Topological distribution of the cluster obtained from simulations atb50.17. The data are
averaged over the later stage of evolution~the cluster contained 2000–3000 bubbles!. No single large bubble
appeared in this run.

n 3 4 5 6 7 8 9

xn 0.0018 0.046 0.26 0.52 0.11 0.040 0.011
n 10 11 12 13 14 15 16
100xn 0.78 0.38 0.23 0.075 0.075 0.050 0.025
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Here xn are the relative fractions of then-sided bubbles;
wn are their relative disappearance rates. Different contri
tions in Eq.~2! are due to the vanishing of triangles, rec
angles, and pentagons, respectively. Let us derive the exp
sions for c6

det, the corresponding probabilities in th
deterministic case, for a large bubble~LB! with more than
n* sides. Later we will define the precise meaning ofn* and
estimate its value.

Consider a vanishing bubble (n<5) on the surface of the
LB. First, let the LB be the only large neighbor of th
bubble and let its other neighbors be small (n<7; corre-
sponding to the picture obtained in the numerical exp
ments@16,17#!. We assume@20# that in this case the LB can
lose a side only if there is no other possibility, i.e., on
when the vanishing bubble is a triangle@6# ~and not in the
case of a rectangle or a pentagon!. Consequently, Eq.~2!
implies c2

det5C2[3w3x3. At the same time, the LB will
always gain one side when a pentagon vanishes. Since
case has five outcomes, the probability to gain a side
random T2 process is 5 times smaller, hen
c1
det5C1[5c1

ran.
In the other case, when the neighbors of the vanish

bubble includeanotherlarge bubble~in addition to the LB!,
even if it is not as large as the LB, the competition betwe
them may completely randomize the result of theT2 process.
In this case the probabilitiesc6

det should not differ from Eq.
~2!. Since our numerical experiments show that bubbles w
n>8 are large enough to randomize theT2 process, we in-
troducea, the probability for a given side of the vanishin
bubble to belong to a ‘‘randomizing’’ bubble. Neglectin
topological correlations we get

a5

(
n58

`

nxn

(
n53

`

nxn

, ~3!

wherexn is the topological distribution of the cluster includ
ing its boundary@15# ~i.e., including all the hexagons tha
have at least one nonhexagonal neighbor!; see Table I. We
defineG l512(12a) l , the probability that at least one o
the l sides of an (l11)-sided vanishing bubble belongs to
randomizing bubble~one more side is associated with th
LB!. Then we can write the expressions forc6

det in the pres-
ence of the randomizing bubbles:

c1
det5c1

ranG41C1~12G4!, ~4!

c2
det53w3x312w4x4G312w5x5G4 . ~5!

The first and the second terms in Eq.~4! correspond to the
cases when the vanishing pentagon has and has no ran
izing neighbors. Equation~5! contains three terms. Since tr
angles vanish without any choice, their contribution~the first
term! is the same as in Eq.~2!. Rectangles contribute toc2

only in the presence of a randomizing neighbor, so th
contribution includes the factorG3 @compare with Eq.~2!#,
guaranteeing that at least one of its three neighbors~other
than the LB! is a randomizing one. Analogously, the pen
-

es-

i-

his
a

g

n

h

m-

ir

-

gon’s contribution includes the factorG4. Finally, the transi-
tion probabilities for anyb are determined by

c̃6~b!5bc6
ran1~12b!c6

det. ~6!

Now we can explain simply the small-b behavior of the
LB: if c̃1(b). c̃2(b), its number of sides,n will grow lin-
early with time and thereforem2→`. This linear growth
is consistent with the linear dependence ofn(Aa) presented
in Fig. 2. Indeed, if n;Aa, Eq. ~1! implies a;t2→n
;Aa;t. The condition for criticalb is c̃1(bc)5 c̃2(bc),
which gives

bc5dcdet/~dcdet1dcran!, ~7!

wheredc[c22c1 . Substituting into Eq.~3! the values for
xn obtained in our simulations~see Table I! for b50.17 we
get a'0.10. The experimental values@21# for the rateswn
arew3549.0,w457.7, andw551.0. Using all these num
bers in Eqs.~2!, ~4! and ~5!, we find c1

det50.93,c2
det50.63,

c1
ran50.26, andc2

ran51.48. Then, Eq.~7! yieldsbc'0.2, sur-
prisingly close to the result of our simulations, verifying o
assumptions.

Thus, for b,bc any bubble with more than a critica
number of sidesn* ~a LB! will increase its number of sides
leading to unbounded growth ofm2. Sincen* is finite ~from
our simulations we estimate it asn*;14), a LB unavoidably
appears, as the cluster becomes larger. The LB-nuclea
probability is rather small, so it may take a long time for
nucleus to appear@22#. Moreover, the fluctuations of this
nucleation time are also large. Therefore, for short runs
nucleus may not appear at all andm2 remains bounded, caus
ing the above-mentioned coexistence. For infinitely lo
runs a sharp transition atb5bc'0.20 is expected.

For b.bc , c̃1(b), c̃2(b) and the LB prefers to lose
sides, som2(t) stays finite ast→`: m2(t)→m2(b). Such
behavior is shown experimentally in Ref.@3~b!#, Fig. 5. The
dependencem2(b), obtained in our simulations, is presente
in Fig. 3. We can estimatem2(b) nearbc . The singular part
of m2(b) is determined by thetail of the distributionxn ,
given @19,21# roughly by xn;gn, whereg5c1 /c2 . Since
g(bc)51, at b'bc we haveg(b)512b(b2bc), b.0.
Then,xn;e2b(b2bc)n, som2(b);(b2bc)

22. Although our

FIG. 3. Second moment of the topological distribution of t
cluster m2 as a function of the noise parameterb for
b.bc'0.17.m2 grows sharply whenb approachesbc .
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simulations show similar behavior, quantitative agreem
requires much larger simulations.

Experimental study and more basic simulations would
welcome. The simplest experimental test is the transient
havior of a froth started with a very ordered configurati
@3#. Thepeakof m2(t) observed in this case is closely relat
to the behavior of the single cluster@13,23#. If roughening
the plates and tuning theD/d ratio destroy the peak o
m2(t), it would confirm the effect reported in this pape
tt
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cr.
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Numerical experiments using aq5` Potts model, similar to
that of @16# but at finite temperature, would also be intere
ing. One can study whether the temperature can random
T2 processes enough to reproduce this behavior. An
gously, the same question can be posed about the quen
disorder.
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