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Randomness and determinism in soap froth dynamics
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A topological model of soap froth evolution with deterministic topological rearrangenf€gtprocesses
agrees with experiments, in contrast with a model that perfarthprocesses at random. However, in some
physical situations thd2 processes are not purely deterministic. The present work analyzes the interplay
between randomness and determinismTi& processes by simulating a topological model, in which the
randomness is controlled by a parameter. The results agree with the suggested mean-field description. A
possible experimental test of these results is discu$Sdd63-651X97)09101-Q

PACS numbegs): 82.70.Rr, 02.50.Fz, 05.70.Ln

Soap froth, confined between two closely spaced parallel The model based on randoh®2 processes gives satisfac-
plates, forms a cellular structure whose time evolution exhibtory results for the distribution of the number of sidéspo-
its a number of interesting featurgl. The starting point for logical distribution in the scaling statgl0,11], but disagrees
the study of the froth’s dynamics is von Neumann’s law,with experiments in a@ualitativeway for a number of more
which states how the areg of anyn-sided bubble changes complicated problem$13]. We will consider here one of

in time [2]: them, the evolution of a single defejc4] in an ideal net-
work of hexagonal bubble&he defect is created by al
da, _ K(n—6) 1) switch of a single side Were it not for the defect, the system
dt ' would have been steadgee Eq.1)]. So the network con-

sists of two parts: the evolving neighborhood of the defect

wherek absorbs all the material constants. (the “perturbed” parf and the “inert” hexagons that do not

As Eq. (1) implies, bubbles witm<6 sides shrink and evolve. A propagating front separates them.
disappear, so the total number of bubbles in the system de- Simulations of this problem by the random mod#b]
creases. Since no new bubbles appear and the total areamkdicted that the topological distribution of the growing
the sample is fixed, the mean area of a bulsblecreases. cluster approaches a steady form with second moment
After a transient period3,4], which depends on the initial u,~0.8. More detailed numerical experimenft6,17,
configuration, coarsening approaches thversal scaling where the effects of the spatial configuration of the froth are
regime[5] characterized by linear growth of the mean areataken into account explicitly, show, however, tiebounded
a~t and steady distributions of dimensionless arf@asnits  growth of u,. The cluster consists of one very large bubble
of a) and the number of sides of the bubbles. (with its number of sides being of the order of the number of

When a bubble disappears, its neighbors can lose or gainubbles in the clustgisurrounded mostly by five-, six-, and
sides[6]. Such suddetopological rearrangementare called  seven-sided bubbles, resulting in the unbounded growth of
T2 processes. While Eq1) determines the evolution of the u, in a straightforward way.
froth in terms ofa,, andn in a uniqueway, the outcome of a This discrepancy originates from the nonrandomness of
T2 process imnot uniquely determined by these variables the T2 processes. Indeed, the more realistic topological
(except for triangles there aretwo possibilities for the de- model(modelC in Ref.[13]), which performsT2 processes
cay of a rectangle antive for a pentagon. The correct out- deterministically reproduces the cluster’s structure described
come can be determinexhly by specifying the total dynam- above. The explicit rules are not essential for us now; we
ics of the mechanical equilibratidi@]. Only by solving such  note only that in modeC a many-sided bubble more readily
dynamics can one simulate tldeterministicevolution of a receives a side when a pentagon vanishes and more reluc-
given initial configuratior{ 8]. tantly loses a side when a rectangle vanishes, compared to

One can avoid this complicated problem using a so-callethe randomT2 case, promoting the growth of the largest
topological approach9]. Select theT2 outcome at random bubbles.
[10,11) or apply any other plausibleule that defines the This failure of the random model does not mean that it is
T2 processes in terms af, andn only [12,13. Then the totally irrelevant. Indeed, one can imagine situations where
froth’s dynamics is treated as follows. The bubbles’ areashe T2 processes look random. When a four- or five-sided
evolve according to Eq1). Whenever a bubble’'s area ap- bubble shrinks to a point it turns into faurfold or fivefold
proaches zero, &2 process is performed according to the vertex that ismechanically unstabland decays into one of
chosen rule. To perfornT2 processes one needs to keepthe possible stable configurations of threefold vertices. Gen-
only the topology (a list of neighboy and not the explicit  erally, the result of the decay of an unstable state into one of
spatial configuration of the froth. The topological informa- several stable states may depend on very tiny details of the
tion can be stored in thadjacencymatrix [10]. Then the real system. In this sense, the deterministic model relates to
T2 processes are equivalent to certain transformations of thike “ideal” situation, which can be perturbed, for example,
matrix. by roughening the plates’ surfaces, especially if the distance
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FIG. 1. Second moment of the topological distribution of the
clusteru, as a function of the number of killed bubblesbtained 0 o
by simulations on a lattice of 40 000 bubbles for three values of the d

noise parameterB: B=0.1 (solid squares B=0.7 (crosses
B=0.2 (open circles Peaks of these curves at the very end of the  FIG. 2. Typical evolution of large bubbles. Dependence of the
evolution are due to finite-size effects, as seen from the comparisopumber of sides on Va (a is the area of the bubblefor two
with larger simulations;3=0.2 (bullets for 100 000 bubbles lat- bubbles in the same cluster, At=0.17.
tice.

. . small 8 one of the bubbles rapidly increases its number of
between the plate® is much greater than the soap walls’ gjgesn and in a short time achieves= 30, when the simu-
width d as suggested in Rejf7]. lations automatically stopped. For largesuch large bubbles

When D>d, the irregularities of the plates’ shape are 4re not observed. Typical dependenpgét) for three values
magnified by the three-dimensional capillary instability of ¢ B are presented in Fig. 1. Fg=0.2 and3=0.7, u,

the vanishing bubble and therefore can effectively randomizg .pieves its equilibrium value in a very short tifis]. On

the T2 processes. In this case, the random approach seef}s; giher hand, fog=0.1, 1, grows linearly in time.
relevant. In the opposite limiD<d, the situation is quite Increasing8, the behavior changes #=0.17. | have
stable andT2 processes are determinisfic]. Accordingly, performed extensive simulations f@=0.17 on a network
the long-time evolution of the single cluster is qualitatively of 100 000 bubbles. The maximum number of bubbles in the

different in these two limits, answering the question posed afyster wasN=4250. In some runs, the topological distribu-
the end of Ref[7], whether the difference between the tWo i of the cluster rapidly approached a steady faisee

limits leads to dissimilar macroscopic behavior at long times: 4o ) with u,~1.65(whenN~300) and then stayed al-

__In the present work we “bridge” these two extremes, ,qt ynchanged until the erftiarge 8 behavion. In other
introducing noise into the deterministic modehodel C of runs, a large bubble appeared and grew umI30 (“small
Ref. [13]). Experimentally, the noise is governed by the 8" behavion. A typical evolution of such bubbles is pre-

plates’ roughness and by thi2/d ratio; in the Potts model goniaq in Fig. 2. In fact, this coexistence has been observed
simulation, like that of Ref[16], the T2 processes can be not only at 8=0.17 but in the whole interval

randomized by the temperature as well as by the quenche@_l7<’8<o_20; the “large 8" behavior did not occur for

disorder. $<0.17 and the “small@” behavior did not occur for

thés.l.we |hntrodu<_:e tq_eznmse pararqlqzﬁhEr(0<,8<1), tge B>0.20. This coexistence is due to the finite duration of the
probability that a givenr2 process wi appen at random. ;i jations and is related to the “nucleation time” as dis-
At the two extremes we have the determinist@<0) and . ,ssed below.

rando_m B=1) approaches, so thal, growth is unbounded ) ot s turn to the mean-field description. We define the
for =0, while for =1 it stays finite. Therefore, gradually ,opapilities for a givem-sided bubble to gain and to lose a
increasingB frqm 0 to 1, one expectstaansitionfrom one  gige in aT2 ProcessPyq=C, N, Pise=C_n (the coeffi-
type of behavior to _another at son;£e=ﬁ_c._ Qn the other  qjonts c, and c_ are the corresponding probabilities per
hand, one cannat priori rule out the possibility that for any side. For randomT2 processes, the following expressions

B#0,  uo(t) is bounded and converges to its limib(8)  \yere obtained in a mean-field approximatidi®)]:
and u,(B8) —~ when8—0.

| have simulated the model for differept on a network ran an
of 40000 bubbles with periodic boundary conditions. At CE=3WaX3+2WeXg+2WsX5, CT=WsXs.  (2)

TABLE |. Topological distribution of the cluster obtained from simulationsBat0.17. The data are
averaged over the later stage of evolut{tre cluster contained 2000—3000 bubhlé® single large bubble
appeared in this run.

n 3 4 5 6 7 8 9
Xn 0.0018 0.046 0.26 0.52 0.11 0.040 0.011
n 10 11 12 13 14 15 16

10Qx, 0.78 0.38 0.23 0.075 0.075 0.050 0.025
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Here x,, are the relative fractions of the-sided bubbles; | | | ‘ .
w,, are their relative disappearance rates. Different contribu- v I ]
tions in Eq.(2) are due to the vanishing of triangles, rect- 2
angles, and pentagons, respectively. Let us derive the expres-
sions for cf’f‘, the corresponding probabilities in the -
deterministic case, for a large bubkleB) with more than I
n, sides. Later we will define the precise meaninggfand
estimate its value.

Consider a vanishing bubbl@{5) on the surface of the f 1
LB. First, let the LB be the only large neighbor of this -+ .
bubble and let its other neighbors be smal{(7; corre- :
sponding to the picture obtained in the numerical experi- ! ‘ | . ! ) ! ; 1
ments[16,17]). We assum¢20] that in this case the LB can 0.2 0.4 0.6 5 0.8 1
lose a side only if there is no other possibility, i.e., only
when the vanishing bubble is a triandlg] (and not in the
case of a rectangle or a pentajo@onsequently, Eq(2) cluster u, as a function of the noise parametgs for

implies c‘ie% C,E?.)W3X3. At the same time,_the LB_WiII B> B.~0.17. u, grows sharply wherg approachess, .
always gain one side when a pentagon vanishes. Since this
case has five outcomes, the probability to gain a side in gop’s contribution includes the factdy,. Finally, the transi-
r%(r;gom T52 o PrOcess IS 5 times smaller, hence tjon probabilities for any3 are determined by
c¥=C,=5c"

In the other case, when the neighbors of the vanishing T.(B)=Bc"+ (1 B)ce. (6)
bubble includeanotherlarge bubblgin addition to the LB,
even if it is not as large as the LB, the competition between NOw we can explain simply the smafi-behavior of the
them may completely randomize the result of &process. LB: if €. (B)>c_(B), its number of sidesy will grow lin-
In this case the probabilities®® should not differ from Eq. €arly with time and thereforgu,—. This linear growth
(2). Since our numerical experiments show that bubbles withis consistent with the linear dependencen¢f/a) presented
n=8 are large enough to randomize 2 process, we in- in Fig. 2. Indeed, ifn~a, Eq. (1) implies a~t>—n
troducec, the probability for a given side of the vanishing ~ Ja~t. The condition for criticalB is T, (Bc)=C_(B.),
bubble to belong to a “randomizing” bubble. Neglecting which gives
topological correlations we get

FIG. 3. Second moment of the topological distribution of the

Be= ScY( 5+ 5c™), @)
2 nx wheresc=c_—c, . Substituting into Eq(3) the values for
=g X, Obtained in our simulationgsee Table)l for 8=0.17 we

a= ; (3 get@~0.10. The experimental valugg1] for the ratesw,

2 nx, arew;=49.0,w,=7.7, andws=1.0. Using all these num-

n=3 bers in Eqs(2), (4) and (5), we find c%®'=0.93, c%*'=0.63,
c®"=0.26, andc™"=1.48. Then, Eq(7) yields 8.~0.2, sur-

wherex, is the topological distribution of the cluster includ- prisingly close to the result of our simulations, verifying our
ing its boundary{15] (i.e., including all the hexagons that 5g55umptions.

have at least one nonhexagonal neighpsee Table |. We Thus, for B<S. any bubble with more than a critical

. _ I e
defineI'=1—(1—«), the probability that at least one of ymper of sides, (a LB) will increase its number of sides,
thel sides of an [+ 1)-sided vanishing bubble belongs t0 a |eading to unbounded growth gf,. Sincen, is finite (from
randomizing bubblgone more side is associated with the g, simulations we estimate it as ~14), a LB unavoidably

. . t .
LB). Then we can write the expressions " in the pres- appears, as the cluster becomes larger. The LB-nucleation

ence of the randomizing bubbles: probability is rather small, so it may take a long time for a
det _ra nucleus to appea22]. Moreover, the fluctuations of this
ci¥=cT4+C,(1-Ty), (4 nucleation time are also large. Therefore, for short runs the
nucleus may not appear at all apnd remains bounded, caus-
¢ Bwaxg+ 2W,x, 3+ 2Wexsl 'y (5) ing the above-mentioned coexistence. For infinitely long
runs a sharp transition #&= 8.~0.20 is expected.
The first and the second terms in Hg) correspond to the For B>B., C.(B)<C_(B) and the LB prefers to lose

cases when the vanishing pentagon has and has no randofides, sou(t) stays finite ag—oe: u,(t)— u,(B). Such
izing neighbors. Equatiofb) contains three terms. Since tri- behavior is shown experimentally in R¢&(b)], Fig. 5. The
angles vanish without any choice, their contributitime first ~ dependence.,(3), obtained in our simulations, is presented
term) is the same as in E@2). Rectangles contribute . in Fig. 3. We can estimatg,(3) nearB.. The singular part
only in the presence of a randomizing neighbor, so theiof u,(8) is determined by theail of the distributionx,,
contribution includes the factdf; [compare with Eq(2)],  given[19,21] roughly by x,~ ", wherey=c_ /c_. Since
guaranteeing that at least one of its three neighljotiser  v(B;)=1, at 8~ B, we havey(B8)=1—-b(B8—B.), b>0.
than the LB is a randomizing one. Analogously, the penta- Then,x,~e ™ P#~8d" sou,(B8)~(B— B.) ~2. Although our
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simulations show similar behavior, quantitative agreemenNumerical experiments usingcg=~ Potts model, similar to
requires much larger simulations. that of [16] but at finite temperature, would also be interest-

Experimental study and more basic simulations would bdng. One can study whether the temperature can randomize

welcome. The simplest experimental test is the transient bel 2 Processes enough to reproduce this behavior. Analo-

havior of a froth started with a very ordered configurationgOUSIy’ the same question can be posed about the quenched

disorder.
[3]. Thepeakof w,(t) observed in this case is closely related

to the behavior of the single clustgt3,23. If roughening | am grateful to E. Domany for critical comments. This
the plates and tuning th®/d ratio destroy the peak of work was supported in part by grants from the Germany—

0 it Id fi the effect ted in thi Israel Science Foundation, the United States—Israel Bina-
#2(t), it would confirm the effect reported in this paper. tional Science Foundation, and by the Clore Foundation.
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